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SUMMARY 

Data centers have been water guzzlers owing to heavy-duty cooling and energy requirements. Globally, very 

limited efforts have been made in water conservation and water utilization effectiveness (WUE) in data centers 

(DC). The industry standard for WUE is 1.8 L/kWh. This novel research is based on water conservation principle 

by improvising the WUE in DC. To achieve this objective this work proposes an efficient smart water cooling 

modeling framework that leverages the simulation software EnergyPlus (Open source platform) coupled with 

Sinergym (Open source framework) based on Deep Reinforcement Learning (DRL).  

In this study, a realistic DC has been leveraged to fully test the simulated solution for summer design days. The 

smart water cooling model optimizer has been trained using a Deep reinforcement learning (DRL) that 

minimizes the total water consumption. A comparison of the study (with or without DRL) infers that merely 

deploying the simulation software does not efficiently assist in improvising the WUE. It’s the DRL approach 

using DDPG algorithm that has improvised the WUE industry standard by 20.64%.  With this integrated 

solution, being tested in the real time DC, the resultant WUE has outperformed the industry standard.   

Keywords: Water usage effectiveness, Deep reinforcement learning, Data centers, Water conservation, Smart 

water cooling modeling framework. 
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1. Introduction 

Globally, Data centers are rapidly increasing in number due to data explosion, and consequently their negative 

impact on environment is increasing especially in terms of water demand. These data center facilities are 

humongous repositories of hardware such as servers, storage, network, routers, switches that run 

uninterruptedly to meet an ever-evolving requirements of cloud computing, digital storage, movies & music 

streams, artificial intelligence, online gaming, data analytics, and other services. These data centers (DC) are 

huge energy guzzlers that require a large amount of water for cooling purposes.  

In a typical data centers (DC), around 30~40% of the energy is spent on the cooling system (Xianyuan et al. 

2025), thereby posing a pressing need for developing new efficient cooling optimization technologies for DC. 

With the advent of Artificial Intelligence, the computing and data centers consume a large amount of 

freshwater for cooling. Power hungry and energy-intensive GPUs, accelerators, and other specialized AI data 

center hardware produce significant heat, thereby creating a critical challenge for data center operations.   

Data centers are notorious for their massive energy usage and water consumption. As per the study it is 

estimated that downloading 1GB of data may require up to 200 liters of water (Ristic et al. 2015). As per 

(Shumba et al. 2024), the water consumption of two large language models namely Llama-3-70B and GPT-4 

was studied and the findings revealed that writing a 10-page report using Llama-3-70B can consume about 0.7 

liters of water, while the water consumption by GPT-4 for the same task may go up to about 60 liters.  

Globally, only one third of the DC monitor water utilization and for rest water conservation is not a prioritized 

area (Mytton, 2021). Major Data center providers/Cloud service providers (CSP) do not publish any water 

efficiency metrics which indicates that the sustainability efforts by these DCP/CSPs are far too low in 

comparison to the damage done by these water-guzzling infrastructures. 

To address the efficient water utilization, a crucial parameter Water Usage Effectiveness (WUE) is studied that 

ensures the effective water consumption in DC. The novel idea of the project is to improvise WUE in data 

centers wherein it proposes an efficient smart water cooling modeling framework that leverages the simulation 

software EnergyPlus (Open source platform) coupled with Sinergym framework based on Deep Reinforcement 

Learning (DRL). This work endeavors to lower the WUE from the industry standard of 1.8L per kWh. (NREL, 

2003; ESG report,2023; Rutberg,2012). 
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1.1 Objective of the study  

The objective of this research is to develop a smart water cooling modeling framework that has better WUE 

than the industry standard average of 1.8L per kWh. 

1.2 Problem statement 

In a typical Data center, cold water generated from chillers and evaporative cooling towers is sent to the server 

rooms to provide cold air for servers. This continuous supply of cool air generated from water is not put to 

efficient use, thus resulting in poor WUE. Some of the factors that results in the inefficient WUE are first even 

when the servers and chips are either idle or working with limited loads, secondly frequent changing server 

loads and last but not the least that physical locations of servers produce complex and dynamic temperature 

fields inside the server room resulting in the strong thermal impressions and deep heat pockets. 

As mentioned above, these conditions leads to an in-effective water utilization, that calls for an optimized 

control of air cooling in the server farm area by improvising WUE and for better sustainability of DC operations. 

While the energy efficiency of DCs has been researched extensively, however the water utilization efficiency 

(WUE) has so far received little to no attention. This article endeavors for reducing the water footprint in Data 

centers and thus improvising WUE. 

2. Definitions and terminologies (Ref: ASHRAE,2024)  

Adiabatic process- It is a thermodynamic process during which no heat is extracted from or added to the 

system. 

Air changes per hour- Ventilation airflow divided by room volume. It indicates how many times, during one 

hour, the air volume from a space is replaced with outdoor air. 

Air conditioning- The process of treating air to meet the requirements of a conditioned space by controlling its 

temperature, humidity, cleanliness, and distribution. 

Air spread- The divergence of an airstream after it leaves an outlet. 

Air temperature -The temperature of the air measured at a test point. 

Artificial Intelligence- Artificial intelligence (AI) is intelligence demonstrated by machines, as opposed to the 

natural intelligence displayed by humans or animals. 

ASHRAE- The American Society of Heating, Refrigerating and Air-Conditioning Engineers is an American 

professional association seeking to advance heating, ventilation, air conditioning and refrigeration systems 

design and construction. 
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Cooling coils- An arrangement of pipes or tubes, not enclosed in a pressure vessel, that can be used either 

with refrigerant or secondary coolant to provide cooling or cooling with dehumidification. 

Data center- A data center is a physical facility that organizations use to house their critical applications and 

data. 

Dew point temperature- Temperature at which water vapor has reached the saturation point (100% relative 

humidity). Temperature of the air at which it must be cooled at constant barometric pressure for water vapor to 

condense. 

Dry bulb temperature- Temperature of air indicated by an ordinary thermometer shielded from solar and long 

wave radiation 

Energy plus- It is a free open source and cross platform solution for building energy simulation programs. 

HVAC systems- The equipment, distribution systems, and terminals that provide, either collectively or 

individually, the processes of heating, ventilating, or air conditioning to a building or portion of a building. 

Temperature sensor- A sensor located in the fluid that is capable of producing a signal (output) that is related 

to the temperature. 

Water foot print- It is a measure of the quantity of freshwater consumed and polluted. The water footprint of a 

product is the volume of freshwater used to produce the product, measured over the full supply chain (Water 

footprint manual, 2011) 

Water Usage Effectiveness (WUE)-  is a key metric for measuring data center sustainability, defined as the ratio of water 

consumption to the total equipment energy consumption. 

3. Background and Related work 

3.1 How Data Center Water Cooling Works. Water cooling involves channeling water through pipes 

surrounding IT hardware. The liquid absorbs heat from processing units before being transported to 

radiators, where fans dissipate the heat. A reservoir may store additional water to stabilize thermal 

fluctuations. Anti-fouling agents are often added to prevent microbial growth within the system. Water 

cooling systems are generally classified into open-loop systems that are customizable solutions 

designed by users to accommodate specific data center needs, while closed-loop systems are 

preconfigured, self-contained cooling units that provide reliability and ease of maintenance. 

3.2 Water usage effectiveness (WUE). A lower Water usage effectiveness (WUE) signifies a more water-

efficient facility, with the industry average being 1.8L per kWh (industry standards). The lower a data 
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center’s WUE ratio is, the more efficient its use of water resources is.  WUE = Water Consumption (L) / 

IT equipment Energy Consumption (kWh) 

3.3 Types of cooling. The Data centers generally have following types of cooling that are illustrated in 

Figure 1. 

 

 

 

 

 

 

 

 

 

Basis, the various types of cooling practiced in DC, the scope of this study is limited to the chilled water 

system cooling, as this cooling is the most commonly used deployed solution in DC and has heavy utilization 

of water. Data centers employ different water cooling methodologies based on infrastructure needs that are 

discussed as below- 

i. Evaporative Cooling: Uses large fans to pull warm air through water-saturated pads, cooling the air 

through evaporation. 

ii. Rear-Door Water Cooling: Implements heat exchangers at the rear of server cabinets to absorb and 

expel heat efficiently. 

iii. Waterborne Data Centers: Floating data centers leverage nearby water bodies to dissipate heat via an 

open-loop cooling process. 

3.4 Data center cooling controls. The cooling distribution of a typical Data Center comprises of water 

section and air section. The water section consists of chillers and cooling towers wherein water is cooled, 

while the air section circulates the cold water through the ducts in the server room. Through air-water heat 

exchange, the cooled air is blown in the server room, resulting in the air temperature regulation. The generated 

warm water is repeatedly sent back to the chillers and cooling towers for re-cooling. 

 

          Figure 1:            Types of cooling in Data centers 
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3.5 Dynamic workloads 

The dynamic workloads are the varying degree of computing tasks that cause fluctuations in the amounts of 

heat generation from servers. Temperature sensors, humidity sensors and measurement probes properly 

installed at the rack level to measure tiniest fluctuation at the chip level can serve as an input to simulation 

platform. This will help in analyzing the fluctuating workloads at the chip level.                            

4. Methodology 

To improve WUE, and to have efficient water cooling technique, a model has been developed that comprises 

of EnergyPlus, and Python based Deep Reinforcement Learning (DRL) Sinergym framework. The WUE in the DC 

has been calculated using EnergyPlus without DRL and again using EnergyPlus with DRL. The WUE results for 

both the outputs have been compared and discussed in the subsequent section. This section discusses 

workflow, system architecture, various input variables, details of simulation platform EnergyPlus, and Deep 

Reinforcement Learning (DRL) Sinergym. The methodology is shown in Figure 2. 

 

 

 

 

 

 

 

 

Figure 2:  Methodology work flow 
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4.2.1 Variables 

The literature review suggested that there are some modeling tools available for design and controlling that 

allows for reinforcement learning (RL) based controllers. For the ease of use, this research work used 

EnergyPlus version 24.2.0 (Energyplus) which is a free open source and cross platform solution for building 

energy simulation programs. Fundamentally, some important variables used in the simulation platform for 

exchange of information from sensor to the actuator are discussed as below- 

i. Sensor variables- These variables have global scope and are used to get time-varying input data from 

elsewhere in the simulation model. It comprises of inputs from temperature sensors installed in server 

rooms e.g. thermistors, resistance temperature detectors, thermocouples. 

ii. Actuator- The actuator variable has the role opposite to that of the sensor variable. Sensor variables are 

used to get the state of building systems; actuator variables are used to set the state of building 

systems. Some important sub variables under this category are temperature set point (both minimum 

and maximum), humidity ratio, mass flow rate set point, cooling coils, thermal storage coils, surface 

boundary conditions. 

iii. Global variables- Global variables can be used to store intermediate results that span across the 

simulation platform.  

iv. Built-in variables- The EMS system automatically declares a set of built-in variables with predefined 

names. These variables have global scope. Some of the built in functions are dry bulb temperature, 

humidity ratio, barometric pressure, wet bulb temperature, enthalpy of moist air, dew point 

temperature. 

v. Internal variables- The input object declares a user defined variable and maps it to a variable 

elsewhere. Variables so declared have global scope and are used to get static input data from 

elsewhere in simulation platform. The internal variable comprises of the factors such as zone geometry, 

zone air volume (m3/s), air changes per hour, zone floor area, sensible load request, HVAC, air mixer 

controller, chiller capacity. All these mentioned parameters in the variables have to be chosen in the 

framework. 

4.3 Simulation platform- EnergyPlus 

EnergyPlus is a building energy simulation program that is used to model both energy consumption—for 

heating, cooling, ventilation, lighting and plug and process loads and water use in buildings. Figure 3 shows the 

overall simulation software structure. It has three basic components namely: Simulation Manager, Heat 

Balance Simulation module, and Building Systems Simulation module. The Simulation Manager controls the 
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entire simulation process, the Heat Balance Simulation module calculates thermal and mass loads, and the 

Building Systems Simulation Manager handles communication between the heat balance engine and the 

HVAC water and air loops and their attached components such as coils, boilers, chillers, pumps, fans (Crawlie 

et al., 2000). 

 

 

 

 

 

 

 

 

 

 

 

4.4 Deep Reinforcement learning (DRL) 

Reinforcement learning (RL) is learning from experience. An agent interacts with its environment through an 

action and this action is followed by a positive RL signal or negative RL signal (Wang & Hong, 2020, Khan et al. 

2012). By using Deep Learning, Reinforcement Learning (RL) agents can learn directly from raw input data, 

such as images, sensor readings, without the need for manual feature engineering. For this work Open source 

Deep Reinforcement Learning Sinergym framework has been used. It is an open source Python-based virtual 

test bed for large-scale building simulation. The objective of Sinergym is to create an environment for 

simulation engines for building control using deep reinforcement learning. The main functions of Sinergym are 

data collection, continuous control, and experiment monitoring, benchmarking environments, ability to 

integrate with different simulation engines, automatic building models configuration and data visualization. 

4.5 Learning model  

In this paper, the improvisation of water usage effectiveness in Data center is pursued. In order to achieve this, 

Energyplus coupled with Sinergym has been deployed in the smart cooling model framework. It uses learning 

algorithm is to adapt the deep neural network parameters that represent the controller to successfully map 
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the input water usage to output optimized temperature in SFA. The Deep Reinforcement Learning controller 

has inputs from sensor readings that indicate the water usage, temperature in the SFA and a reward signal 

based on the evaluation of the cooling control applied. The output signal is used to dynamically send the 

signals to cooling actuators resulting in effective and intelligent temperature spread. 

 

 

 

The Figure 5 shows how the learning algorithm interfaces with the smart cooling modeling framework that 

stores past experiences in a memory buffer, maps current states to actions (learns the policy), and computes 

the gradients based on the received rewards to update the network parameters. The learning algorithm is 

evaluated based on the control effort required to efficiently cool the SFA by minimizing the water usage, time 

to go from the initial to the final configuration, and number of iterations required to train the learning algorithm 

to achieve the best performance. 

4.6  Algorithms  

Deep Reinforcement Learning is a rapidly advancing field that combines the power of Deep Learning with the 

principles of reinforcement learning. Various types of algorithm for DRL are Deep Q-Learning (DQN), Policy 

Gradient Methods, Deep Deterministic Policy Gradient (DDPG), Asynchronous Advantage Actor-Critic (A3C), 

Soft Actor-Critic (SAC), Proximal Policy Optimization (PPO), and Sample Efficiency. However for the 

experiment purposes Deep Deterministic Policy Gradient (DDPG) is leveraged as it is flexible, economical, 

robust and efficient (Fangzhou et al. 2025, Xiangfei et al. 2022).  

4.6.1 Deep Deterministic Policy Gradient (DDPG) 

Deep Deterministic Policy Gradient is an off-policy algorithm.  
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It integrates ideas from Deterministic Policy Gradient and Deep Q-Network. It is based on actor-critic method 

based on Deterministic Policy Gradient. The algorithm uses two neural networks, one for the actor and one for 

the critic and leverages the benefits of both the value based and policy based. The actor preserves a policy. 

The policy gets a state in the form of input and produces an action as its output (Ashraf et al. 2021). 

5. Results 

5.1 Experiment and environment settings 

A hyperscale data center of total server farm area of 402.54 sq mt. located in National Capital Region of Delhi 

was chosen as the environment set up.  

Timestamp Temperature 
(°C) 

Humidity 
(%) 

Dry Bulb Temp 
(°C) 

Wet Bulb Temp 
(°C) 

Dew Point  
(°C) 

Pressure (hPa) 

01-09-2024 00:00 25.2 60 25.2 20.1 16.8 1012 

01-09-2024 01:00 24.8 62 24.8 19.9 16.5 1012 

01-09-2024 02:00 24.5 63 24.5 19.7 16.3 1011 

01-09-2024 03:00 24.1 65 24.1 19.5 16.1 1011 

01-09-2024 04:00 23.8 66 23.8 19.3 15.9 1010 

01-09-2024 05:00 23.6 67 23.6 19.2 15.8 1010 

01-09-2024 06:00 24 65 24 19.6 16.2 1011 

01-09-2024 07:00 25 62 25 20 16.7 1012 

01-09-2024 08:00 26.3 58 26.3 21.1 17.5 1013 

01-09-2024 09:00 27.5 55 27.5 22 18.2 1014 

01-09-2024 10:00 28.8 52 28.8 22.9 18.9 1015 

01-09-2024 11:00 30.2 49 30.2 23.8 19.6 1016 

01-09-2024 12:00 31.5 45 31.5 24.6 20.1 1016 

01-09-2024 13:00 32 43 32 25 20.3 1015 

01-09-2024 14:00 32.4 41 32.4 25.3 20.4 1014 

01-09-2024 15:00 32.1 42 32.1 25.1 20.3 1013 

01-09-2024 16:00 31 44 31 24.3 19.9 1012 

01-09-2024 17:00 29.5 48 29.5 23.2 19.2 1012 

01-09-2024 18:00 28 52 28 22 18.4 1011 

01-09-2024 19:00 27 55 27 21.3 17.9 1011 

01-09-2024 20:00 26 58 26 20.5 17.3 1011 

01-09-2024 21:00 25.5 60 25.5 20.2 17 1011 

01-09-2024 22:00 25 62 25 19.9 16.7 1011 

01-09-2024 23:00 24.7 63 24.7 19.7 16.5 1011 

                                                  

   Table 1: Output data from the Data Centre 

The said DC was having an HVAC system consisting of air economizers, evaporative coolers, cooling coils, and 

chillers. The main source of heat comes from the hosted servers in the 42U racks. The building is simulated 

with EnergyPlus platform. The experiment was run in the month for September 2024.  The sample output file 
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(.xml) from Data centre served as an input through ‘Data transfer’ API to the EnergyPlus that has Python 

Plugins as well. EnergyPlus is modular in its actual filling in the details for the simulation. Because of this 

modularity, each module is responsible for getting its own input. It receives this input from the input processor 

from APIs connected to Data centre. The input data file is the primary file that EnergyPlus uses to create the 

water effectiveness simulation. The various input files thus created in EnergyPlus are- ZoneAirCooled.idf, 

Chillers.idf AirflowNetworkVent.idf, RoomAirflowNetwork.idf, HybridVentilationControl.idf, Refrigeration 

Cases.idf, FluidPropertiesRefData.idf etc.   

Program Version,EnergyPlus, 24.2.0, 10/02/2024/11:02:17,IDD_Version 24.2.0 
Var Type (timestep per hour, 6  
Zone,Average,Site Outdoor Air Drybulb Temperature,35C 
Zone,Average,Site Outdoor Air Dewpoint Temperature, 28C 
Zone,Average,Site Outdoor Air Wetbulb Temperature, 32C 
Zone,Average,Site Outdoor Air Humidity Ratio, 48% 
Zone,Average,Site Outdoor Air Relative Humidity, 66% 
Zone,Average,Site Outdoor Air Barometric Pressure, 100000Pa  
Zone,Average,Site Sky Temperature, 37C 
HVAC,Average,System Node Temperature, 23C 
HVAC,Average,System Node Mass Flow Rate, 27kg/s 
HVAC,Average, Site WaterMainsTemperature, 35C   
HVAC,Average,System Node Setpoint Temperature, 23C 
HVAC,Average,System Node Setpoint Humidity Ratio, 41% 
HVAC,Average,System Node Wetbulb Temperature, 24C 
HVAC,Sum, Zone Mechanical Ventilation No Load Heat Removal Energy, 857J 
HVAC,Sum,Zone Mechanical Ventilation Cooling Load Increase Energy,12000J 
HVAC,Average,Zone Mechanical Ventilation Mass Flow Rate, 0.8kg/s 
HVAC,Average, Zone Mechanical Ventilation Standard Density Volume Flow Rate, 4.5m3/s 
HVAC,Sum,Zone Mechanical Ventilation Standard Density Volume, 130m3 
HVAC,Sum,Zone Mechanical Ventilation Mass, 190kg 
HVAC,Average,Zone Mechanical Ventilation Air Changes per Hour,50ach 
HVAC, Facility Water Use Volume, 200m3 
HVAC, Cooling tower heat rejection, 340.9TR 
HVAC, Condenser flow delta, 10C 
HVAC, Chilled Water Supply, 15C 
HVAC, Chilled Water Return, 25C 
HVAC, Evaporation Rate, 6.5GPM 
HVAC, Hot water equipment load, 2400kw 
HVAC, Blow down rate, 1.1m3/s 
HVAC, Make up water flow rate, 7.9m3/s 
ElectricEIRChiller Climaventa NX2WG06 34.5kW/2.67COP 
HOT WATER LOOP ,1,0.1062471,11942.67,0.2586269,Yes ,7.324432E -004,2.586533E-004,Yes,1.0000,0.646862,4197.9300,999.8980   
CHILLED WATER LOOP ,1,1.1222815,17614.26,0.6290764,Yes ,1.197307E -003,1.122396E-003,No,1.0000,6.256652E-002,4197.9300,999.8980 
Coil:Cooling:Water, MAIN COOLING COIL 1,37219.64,24969.42,12250.22,0.67,4202.30,42.62 

 
                                     

Figure 6:   Sample output file from EnergyPlus 

Based on the input parameters, simulation has been run for summer design days and the output file 

eplusout.rdd file is mentioned in Figure 6.  The simulation graph has been generated by using Python Notebook 

for the data captured from EnergyPlus and is illustrated in Figure 7. The simulation exhibit is a graph between 
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load (MW) and water consumption for the entire month of September 2024. The output file from EnergyPlus 

served as an input for the Sinergym framework that is using DDPG algorithm. 

 

                                           Figure 7:   Simulation from EnergyPlus 

The WUE values calculated using Sinergym framework with hyper parameters using DDPG algorithm along 

with the values are mentioned in Table 2. Both actions and critic values are normalized using Sinergym 

wrappers. Actions are performed every ten minutes, which maps to six time-steps per hour.  

Hyperparameters Value 

Actor learning rate 0.0001 

Critic learning rate 0.001 

Discount factor 0.9 

Batch size 64 

Target update rates (Episodes) 100 

Target update factor 0.005 

                                             Table 2: Hyperparameters and values for DDPG 

5.2 Comparison of WUE results   

WUE is calculated for the month of September 2024 with EnergyPlus and EnergyPlus with DRL using DDPG 

algorithm. The data is captured in Table 3. The WUE result for EnergyPlus on daily basis has been compared 

with the results when EnergyPlus is used with DRL. For a typical data center design, smart water cooling model 

optimizer has been trained using a Deep Reinforcement Learning algorithm that minimizes the total water 

consumption, when benchmarked against the industry standard of 1.8L/kwh. 
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Days of Month 
(Sept.) 

EnergyPlus 
(Without DRL) 

EnergyPlus 
(with DRL) 

Days of Month 
(Sept.) 

EnergyPlus 
(Without DRL) 

EnergyPlus 
(With DRL) 

1 1.93 1.48 16 1.86 1.51 
2 1.90 1.44 17 1.80 1.56 
3 1.88 1.52 18 1.82 1.52 
4 1.81 1.49 19 1.85 1.56 
5 1.95 1.45 20 1.88 1.52 
6 1.91 1.44 21 1.91 1.49 
7 1.80 1.49 22 1.96 1.48 
8 1.82 1.50 23 1.92 1.44 
9 1.75 1.44 24 1.88 1.42 

10 1.79 1.45 25 1.91 1.46 
11 1.87 1.49 26 1.85 1.45 
12 1.91 1.47 27 1.86 1.46 
13 1.90 1.48 28 1.86 1.58 
14 1.86 1.46 29 1.81 1.50 
15 1.83 1.53 30 1.87 1.52 

 
Table 3: Calculation of water utilization efficiency comparison 

 

 
 

A comparison of the study (with or without DRL) infers that merely deploying the simulation software does not 

efficiently assist in improvising the WUE. It’s the DRL approach using DDPG algorithm that has improvised the 

WUE industry standard by 20.64% as illustrated in Figure 8.   

6. Conclusions 

This work presented a smart water cooling modeling framework based on Deep Learning Reinforcement. The 

DRL based solution integrated with Sinergym and EnergyPlus (simulation platform) improvised the water 

utilization efficiency. A realistic Data center environment has been leveraged to fully test the simulated 
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Figure 8: Comparison of WUE results 
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solution for summer design days. With this integrated solution, being tested in the real time Data center, the 

resultant WUE has outperformed the industry standard. The results illustrates that the water cooling presents 

a viable solution for modern data centers, enhancing cooling efficiency and sustainability.  

As a future research direction, it is proposed that as the DC evolve, integrated water-efficient solutions will be 

essential for optimizing energy usage and minimizing environmental impact. 
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